
Toward Distributed Service Discovery in
Pervasive Computing Environments

Dipanjan Chakraborty, Anupam Joshi, Senior Member, IEEE,

Yelena Yesha, Senior Member, IEEE, and Tim Finin

Abstract—The paper proposes a novel distributed service discovery protocol for pervasive environments. The protocol is based on the

concepts of peer-to-peer caching of service advertisements and group-based intelligent forwarding of service requests. It does not

require a service to be registered with a registry or lookup server. Services are described using the Web Ontology Language (OWL).

We exploit the semantic class/subClass hierarchy of OWL to describe service groups and use this semantic information to selectively

forward service requests. OWL-based service description also enables increased flexibility in service matching. We present simulation

results that show that our protocol achieves increased efficiency in discovering services (compared to traditional broadcast-based

mechanisms) by efficiently utilizing bandwidth via controlled forwarding of service requests.

Index Terms—Service discovery architecture, pervasive computing, MANET, OWL, semantic description, peer-to-peer,

advertisements.

�

1 INTRODUCTION AND MOTIVATION

SERVICE discovery is a well-recognized challenge in
distributed environments [40], [9], [14], [24], [27], [31].

With the decreasing cost and form factor of computing
devices, the increase in the information being kept on these
devices, and the increasing prevalence of short range ad hoc
wireless networks, service discovery will play an important
role in Pervasive Computing environments. Pervasive Comput-
ing environments are comprised of handheld, wearable, and
embedded computers in addition to regular desktop clients
and servers. These are connected by some combination of
wireless ad hoc networks and wireless infrastructure-based
networks, such as WLANs. In such environments, the
cohort of computing elements participating in any distrib-
uted system dynamically changes with time. In other
words, a user (her computing device(s), to be precise)
spontaneously networks with different devices as she and
other users change locations over a period of time. This is
not to say that all elements in this distributed scenario must
be mobile—only that no particular set of devices/computers
is available to form the stable core of a distributed system at
all times. For instance, in environments such as shopping
malls, conference venues, or smart-offices, some devices
(e.g., desktops/laptops, IP phones, point of sale terminals,
projectors, coffee machines) are static while other devices
(cell phones, handhelds, etc.) are mobile. In the extreme
case, Pervasive Computing environments include MANETs

(Mobile Ad hoc Networks), where all nodes are mobile and
dynamically change their locations. Examples of such
environments can be found in the mobile devices used by
emergency response services, by soldiers in battlefields, by
people walking on streets, etc.

We envisage that, in the near future, static, mobile, and
embedded devices will provide customized information,
services, and computation platforms to peers in their
vicinity. The primary goal of applications for pervasive
computing environments is to perform the task given by the
user by exploiting the resources or services that are present
in the neighborhood. Some requests need a single service,
which is directly available in the vicinity, whereas some
other requests need multiple services or information
sources to be integrated to obtain the desired result. In
either case, we need a flexible service discovery infrastruc-
ture that is tailored toward pervasive environments [10].

Of course, there are issues related to security and privacy
in such environments. Other colleagues in our group are
building distributed trust and belief-based systems for
security and privacy in pervasive environments [2], [28],
[44]. There is also a question of payments for services
offered in this environment. This is outside the scope of our
present work, but is being actively researched in the m-
commerce and economics domains.

There have been considerable academic and industrial
research efforts in service discovery in the context of wired
as well as partly wired/wireless networked services. Two
important aspects of service discovery are the discovery
architecture and the service matching mechanism. Protocols
like Jini [1], Salutation and Salutation-lite [40], UPnP [25],
UDDI [45], and Service Location Protocol [22] have been
developed to facilitate applications to discover remote
services residing on stable networked machines in the
wired network. Some of these protocols (e.g., UPnP) can
also be used by mobile devices to discover networked
services using wireless networking technologies like 802.11

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 2, FEBRUARY 2006 97

. D. Chakraborty is with IBM India Research Lab, Block I, Indian Institute of
Technology, Hauz Khas, New Delhi-110016, India.
E-mail: cdipanjan@in.ibm.com.

. A. Joshi, Y. Yesha, and T. Finin are with the Computer Science and
Engineering Department, University of Maryland Baltimore County, 1000
Hilltop Circle, Baltimore, MD 21250.
E-mail: {joshi, yeyesha, finin}@cs.umbc.edu.

Manuscript received 13 Nov. 2002; revised 28 Oct. 2003; accepted 23 June
2004; published 15 Dec. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number 8-112002.

1536-1233/06/$20.00 � 2006 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
FEB 2006 2. REPORT TYPE

3. DATES COVERED
 00-02-2006 to 00-02-2006

4. TITLE AND SUBTITLE
Toward Distributed Service Discovery in Pervasive Computing
Environments

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland Baltimore County,Computer Science and
Engineering Department,1000 Hilltop Circle,Baltimore,MD,21250

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

(a, b, or g). The general architecture of these protocols is as
follows: A service advertises and registers itself to a service
register that keeps track of networked services. Services can
deregister at any point of time. Most of the communication
happens over IP-type networks, and the discovery protocol
relies on multicasts and broadcasts for important functions,
such as the discovery of the registry. In summary, these
architectures are primarily centralized/semicentralized,
registration-oriented, and have an implicit assumption that
the underlying network is stable and is capable of providing
reliable communication. Clearly, service discovery in
pervasive computing environments requires a decentra-
lized design approach where a node should not depend on
some other node(s) to advertise/register services. Each
service should be autonomous and be able to advertise its
presence. Moreover, the discovery should also adapt itself
to reflect the changes in the vicinity. A discovery protocol
should be able to utilize the underlying network efficiently.

Existing service matching techniques in the above-men-
tioned protocols use simple matching schemas. They use
interface descriptions (e.g., Jini), attributes [1], [40], or even
unique-identifiers (Bluetooth SDP [5]). Service matching is
done at a syntactic level. However, syntactic level matching
and discovery is inefficient for pervasive environments due
to the autonomy of service providers and the resulting
heterogeneity of their implementations and interfaces. For
example, we can have the same service implement different
interfaces which could result in the failure of a syntactic
match if the service query does not match with any
interface. To alleviate this problem, there has been con-
siderable work to develop languages [29], [6], [20] to
express service requirements and facilitate flexible seman-
tic-level service discovery [11], [49], [18].

Service discovery architectures [23], [3], [2] developed
specifically for pervasive environments are either request-
broadcast-based or advertisement-based. In a broadcast-
based1 solution, a service discovery request is broadcast
through out the network. If a node contains the service, it
responds with a service reply. The protocol, under ideal
conditions of a fully-connected network without message
losses, offers high reliability in discovering a service.
However, it suffers from the following disadvantages: First,
global broadcast scales poorly with increasing network
diameter and network size. Second, it utilizes resources and
computation power on all nodes of the network including
nodes that do not even have the service or nodes that may
not even fall in the route to the desired service. This extra
processing is essentially redundant. Third, it utilizes
significant network bandwidth (since the request traverses
to all nodes through all paths possible) and, hence, creates a
large load on the network.

The other solution is for the services to advertise
themselves to all of the nodes. Each node interested in
discovering services cache the advertisements. The adver-
tisements are matched with service requests and a result is
returned. In this solution, the cache size increases with the
number of services. Many of the nodes have limited
memory and are unable to store all the advertisements.

Soon the cache gets filled up. This is also inefficient in terms
of bandwidth usage, since the whole network has to be
periodically flooded with advertisements. There are solu-
tions that offer both advertisements and broadcast of
requests, but nevertheless do not address the problems of
network load, network-wide reachability, and scalability.

Existing solutions have mostly considered the service
matching and the discovery architecture as two decoupled
fields. This paper introduces a novel approach (dubbed
Group-based Service Discovery or GSD) that combines the two
by utilizing semantic service descriptions used in service
matching to develop an efficient, distributed, scalable, and
adaptive service discovery architecture for pervasive
computing environments. Our architecture is based on the
concept of peer-to-peer caching of service descriptions,
bounded advertising of services in the vicinity, and efficient
selective forwarding of service discovery requests using
functional group information being propagated with
service advertisements. Functional grouping of services
enables our architecture to encompass a broad range of
discovery techniques ranging from simple broadcast to
directed unicast, thus making it highly adaptable to the
requirements of the network. Our solution exploits the
semantic capabilities offered by the Web Ontology Lan-
guage (OWL) [20] to effectively describe services/resources
present on nodes in the ad hoc environment. Furthermore,
the services present on the nodes are classified into several
groups based on the class-subclass hierarchy present in
OWL. A service thus belongs to a hierarchy of groups
starting from the parent group called “Service.” This group
information is used to selectively forward a service request
to other devices where there are greater chances of the
service being discovered. Semantic grouping of services is
not uncommon in the service matching research and has
been used to enable functionally similar or “near” matches
[11], [33]. We use the information to enable semantic
matching and build a highly integrated, yet distributed,
and efficient discovery infrastructure.

We have implemented GSD and extensively compared
its worst case and average case performance with the
traditional broadcast-based solution for service discovery.
We provide results comparing GSD and broadcast-based
service discovery with respect to average response time,
average response hops, discovery efficiency, average net-
work load, and several other parameters. Our results show
that GSD scales very well with respect to increasing
network and increasing request load on the system. Our
experiments also show that discovery efficiency of GSD is
almost as good as discovery efficiency of broadcast-based
solutions and, in fact, performs better than broadcast-based
solutions with respect to other parameters like response
time and network load.

We will use the term MANET (Mobile Ad hoc Network)
and Pervasive Computing Environment interchangeably in the
rest of the paper. MANET represents the extreme of the
pervasive computing spectrum. Our system is designed to
handle this extreme case and our simulations are done on a
MANET. The remaining part of the paper is organized as
follows: In Section 2, we provide a brief description of the
ontology and the functional grouping of services. Section 3
describes our protocol in detail. Section 4 describes the
various salient features of our protocol. Section 5 presents

98 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 2, FEBRUARY 2006

1. Broadcast-based protocol is also referred to as Request-broadcast
based protocol in some parts of the paper.

our experimental results. We survey other related works in
Section 6 and conclude in Section 7.

2 GROUP-BASED SEMANTIC SERVICE DESCRIPTION

We have chosen OWL to define an ontology to describe
services/resources in a MANET. There are a couple of
reasons for choosing an ontology-based approach to
describe services. 1) The semantics of OWL can be used to
describe services in different nodes and also to enable
semantic matching support with those service descriptions.
Any resource or service is described in terms of classes and
properties. In addition, OWL provides rules for describing
further constraints and relationships among resources
including cardinality, domain, and range restrictions as
well as union, disjunction, inverse, and transitivity. These
axioms can be easily exploited to create an ontology
describing services and service groups. 2) OWL, which is
based on eXtensible Markup Language (XML) and Resource
Description Framework [29], is also being used as a standard
to describe information/service on the wired infrastructure
and the Web. This makes our service description interoper-
able with other semantic web infrastructures.

We have leveraged our prior work in the development of
the DReggie Ontology [11] that contains a comprehensive
ontology for describing services in terms of its capabilities,
inputs, outputs, platform constraints, and device capabilities
of the device on which it is residing, etc. Using the class/
subClassOf axiom of OWL, we have incorporated a pre-
liminary grouping of different possible services in a MANET
primarily based on service functionality. A significant
advantage of our discovery architecture is that the ontology
is extensible and one can modify it without altering the
discovery mechanism. The discovery mechanism would take
into account the modification. Due to space restrictions, we
are unable to provide the ontology. However, it is available at
http://daml.umbc.edu/ontologies/dreggie-ont.owl. The
generic class Service is functionally classified into two main
subgroups: Hardware and Software Service. Each subgroup
is further classified in this manner until we reach a very
specific service. For example, a color printer service may be

classified under Service/ Hardware/Input-output-type-Service/

Printer-Service. Fig. 1 shows the functional hierarchy.

3 SERVICE DISCOVERY PROTOCOL

Our protocol (GSD) is based on the concepts of 1) bounded

advertising of services in the vicinity, 2) peer-to-peer

dynamic caching of service advertisements, and 3) service

group-based selective forwarding of discovery requests.

Our protocol also has multiple user-controlled parameters

that determine the extent of bounds for advertising, service

caching, and discovery request propagation. In this section,

we describe these key aspects of our protocol in detail.

3.1 Service Advertisements and Peer-to-Peer
Caching

Each Service Provider (SP) periodically advertises a list of

its services to all the nodes in its radio range. An

advertisement message consists of the following fields:

< Packet-type; Source-Address; Service-Description;

Service-Groups;Other-Groups;Hop-Count;

Lifetime;ADV DIAMETER >

A monotonically increasing identifier called broadcast-id

along with the source-address uniquely identifies a broadcast

and detects duplicate advertisements. Please note that this

identifier is different from source sequence numbers main-

tained by nodes in traditional ad hoc routing literature.

Sequence numbers refer to a single message identifier,

whereas broadcast-id refers to a broadcast event that may

generate multiple messages. The Service-description and

Service-groups contain information about the local service(s)

and their corresponding service groups.
Additionally, each node receiving the advertisement can

forward it to all other nodes in its radio range. The field

ADV_DIAMETER determines the number of hops each

advertisement travels. Each node increments the Hop-

Count when it forwards an advertisement that is, in turn,

used to compute whether the advertisement can be

CHAKRABORTY ET AL.: TOWARD DISTRIBUTED SERVICE DISCOVERY IN PERVASIVE COMPUTING ENVIRONMENTS 99

Fig. 1. Hierarchical grouping of services.

forwarded any further. Fig. 2 shows the pseudocode for
sending advertisements.

Each node on receipt of an advertisement stores it in its
Service Cache. Each entry in the Service Cache contains the
following fields:

< Source-Address; Local; Service-Description;

Service-Groups;Other-Groups; Lifetime >

Apart from storing advertisements, a Service Cache also
stores descriptions of local services in the node (identified
by the local field in each cache entry). The field Other-Groups
contain a list of the groups that the corresponding Source-
Address (sender of the advertisement) has seen in its
vicinity. We follow a least-remaining-lifetime replacement
policy to replace entries when the cache is full. However,
we are aware of work in predictive cache modeling [13] and
profile-driven caching [35], [15] that can be used in our
architecture to model the cache replacement strategy.
However, since cache replacement policies are not the
focus of this paper, we chose a simple uniform cache
replacement strategy for all the protocols. Fig. 3 displays the
pseudocode of the peer-to-peer caching and advertisement
forwarding process.

The advertisement frequency, advertisement diameter,
and advertisement lifetime are user-controlled parameters
that enable GSD to be adapted to the necessities of the device
and the environment. Thus, devices in relatively static
environments may choose to have a low advertisement
frequency with a high advertisement diameter whereas the

reverse can be applied toward highly mobile scenarios where
devices have low availability. We follow the policy of passive
pushing of advertisements rather than active pulling of
descriptions from nodes. Passive pushing enables a device
to detect changes in the environment by the receipt of a new
advertisement, thus making the detection process simple,
efficient, and localized to the device. Active pulling of
information, on the other hand, has greater chances of
collision of messages at the receiving node.

3.2 Advertising Service Groups

Apart from advertising its own services, GSD also uses the
same advertisements to advertise functional group informa-
tion of services a node has seen in its vicinity. The field
Other-Groups in an advertisement contains an enumerated
list of the service groups of all the nonlocal services seen by
the sender node. This information is obtained from the
advertisements stored by the node in its service cache (line 5
in Fig. 2). Fig. 4 shows the pseudocode for the function that
computes this information.

We observe that this service group information gets
propagated from one node to another and may potentially
cover the whole network (if the network is partition free).
Functional group information provides a good abstraction
to represent services and are enough to divert a discovery
request toward the appropriate region. They also provide a
good measure to aggregate the service descriptions and,
hence, save on network bandwidth.

Fig. 5 shows an example of propagation of service
advertisements and the associated service group information

100 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 2, FEBRUARY 2006

Fig. 2. Pseudocode of the process of advertising services in the vicinity.

Fig. 3. Pseudocode for peer-to-peer caching and forwarding of service advertisements.

for a simple ad hoc network. We note that, with an increase in

the diversity of services in a pervasive environment, the

different functional groups of services would also increase.

Each device has a maximum limit of the number of service

groups it keeps for a certain neighboring node. Currently, the

limit is set to the size of the hierarchical tree. However, for

memory constrained devices, our protocol allows lower

values for the maximum number of stored service-groups.

Section 3.3 explains actions taken when a node does not have

enough group information to forward a discovery request.

3.3 Request Routing

A service discovery request originates from a Request

Source (RS) whose application layer requests the service. A

request consists of an ontology-based description of the

service requested and optionally includes descriptions of

service groups to which the requested service belongs. The

request is matched with the services present in the local

cache of the RS (that might also be a SP). A service

discovery request is formed on a local cache miss and

contains the following fields:

<Packet-type; BroadcastId; Service-Description;

Request-Groups; Source-Address; Last-Address;

Hop-Count >

The field Request-Groups contains the service group(s) to

which the requested service belongs. Hop-Count, a user-

controlled parameter, specifies the maximum propagation

limit for the request. We use the information regarding

Other-Groups present in the service cache of each node to

selectively forward a discovery request in case of a local

cache miss. Recall from the previous section that each entry

in the service cache of a node contains a field Other-Groups.

Thus, if the request belongs to one of those groups, then

there is a chance that the requested service might be

available near the node that sent the advertisement.

Consequently, instead of broadcasting the request, GSD

selectively forwards the request to those nodes.
The selective forwarding process is explained in Fig. 6

for a simple ad hoc network. It shows a sequence of nodes

connected to each other with RS being the requesting source

and SP being the service provider where the requested

service (S1) is available. For the sake of simplicity, we only

display a linear connection of nodes and do not show other

nodes that might be present in the vicinity. We do not show

the exchange of advertisements in the figure. Assuming that

each node has advertised its own services and other remote

service groups, Fig. 6 shows the partial service cache entries

in each node. For example, the entry

S2ðG2Þ; G1� > N1

CHAKRABORTY ET AL.: TOWARD DISTRIBUTED SERVICE DISCOVERY IN PERVASIVE COMPUTING ENVIRONMENTS 101

Fig. 4. Algorithm to determine the service groups present in the vicinity of a device.

Fig. 5. Service advertisements and propagation of service group information. (a) Advertisements being sent by node N1. (b) Service group

information being propagated by node N2 during its advertisement phase.

in node N2’s cache means: 1) N2 knows that node N1 has

service S2 belonging to group G2 and 2) N2 knows that N1

has seen a service belonging to group G1 in its vicinity.

When a request belonging to group G1 comes to N3, then

instead of broadcasting it again to all nodes in its vicinity

(N4, N5), N3 selectively forwards it to node N2. This is

because only N2 claims to have seen a service belonging to

group G1 in its vicinity. This process continues in all other

nodes until the request has reached N1 where it finds a

direct match of the requested service (present in the service

cache of N1).The request is by default broadcast to other

nodes when the algorithm fails to determine a set of nodes

to selectively forward the request to. Fig. 7 shows the

pseudocode of the selective forwarding process.
We observe from the above algorithm that, when a node

does not have enough information to selectively forward a

request, it broadcasts the request to its neighboring nodes.

As a practical example, a Service Request for a Printer

Service could specify its Request-Group to be < NULL > ,

or < Input=Output > , or < Input=Output;Hardware > , or

< Input=Output;Hardware; Service > . Thus, depending on

the amount of Request-Group information, the request

would be selectively forwarded (or broadcast) to other

nodes.

We observe that the selective forwarding process might
also result in false forwards. The request might be forwarded
to a region where the service is no longer available (due to
mobility of nodes) or has the right group but not the exact
service and neither a “near” match. This might result in the
failure to discover a service that simple broadcasting of the
request would have succeeded in discovering. In Section 4,
we explain how our protocol can be adapted to reduce false
forwards. Moreover, our experiments show that the
decrease in efficiency is insignificant.

3.4 Reverse Routing of Service Reply

Service reply is generated from the node that matches a
service discovery request. There are a couple of approaches
to route the reply back to the RS: 1) One can use any
standard ad hoc routing protocol like AODV [37], TORA
[34], or DSDV [36] to route the reply back to the RS. 2) The
path traversed by the discovery request could be retraced
by the reply using a reverse routing mechanism. Standard
routing protocols try discovering a new route to the
destination that involve steps like route discovery or
broadcasting link-state information that generate additional
network load. On the other hand, using the already known
route traversed by the request could easily reduce this
additional load. Bhagwat et al. [4] in prior work and our

102 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 2, FEBRUARY 2006

Fig. 6. Group-based selective forwarding of service discovery request.

Fig. 7. Algorithm showing the selective forwarding process in GSD.

own recent studies [17] indicate that integrating routing
with service discovery increases system efficiency. Hence,
we use the concept of reverse routing to route the service
reply back to the RS. However, reverse routing fails if the
route becomes stale or some of the nodes in the previously
established path move away. We detect such failures and
resort to traditional routing using Ad-hoc On-Demand
Distance Vector protocol (AODV) to route the reply from
the point of failure to the RS. The node upstream in the path
detects the failure to transmit the reply to the next hop. We
illustrate the concept in Fig. 8.

Each Request Packet contains a Last-Address field, which
contains the address of the node from which a request is
coming. Each node, in addition to maintaining the Service
Cache, also maintains a Reverse-Route table. Each entry in
the Reverse-Route table contains the following fields:

< Source-Address; BroadcastId; Previous-Address >

An entry is added to the table at the time of forwarding the
discovery request. The entry is kept for REV_ROUTE_TI-
MEOUT time units. When a service reply corresponding to
a request reaches this node, the table is consulted to
determine Previous-Address in the path to the RS to forward
the reply to. The Source-Address and BroadcastId uniquely
identifies a service reply that corresponds to a particular
service request.

3.5 Service Matching

Service matching, even though not the key aspect of this
paper, is important in enabling flexibility and richness in
the discovery process. Apart from representing services
using our functional hierarchical groups, our OWL ontol-
ogy also provides constructs to describe services in terms of
input/outputs, functional similarity, service capabilities,
device/resource requirements, etc. Additionally, each node
in our architecture contains a service matching module that
encapsulates functionalities for matching a service discov-
ery request with a service description. We inherit various
semantic features from OWL (class/subClassOf, unionOf,
etc.) to match services with multiple request types. This
allows the request to be specified in a flexible manner. For
example, the same query can be represented using different
requirements to match a certain service. More details of the

service matching algorithm and the ontology can be found
in our prior work [11].

We have augmented the service matching module to
extract service group related information from a service
advertisement. This is used by the protocol to store service
group information separately in the service cache of each
node and facilitate the selective forwarding process.

4 DISCUSSION OF SALIENT PROTOCOL FEATURES

This section discusses some salient features and presents
some theoretical evaluations of GSD that we believe would
help in better understanding the benefits of our protocol.
These include enabling a broad range of discovery
mechanisms, adaptability to different pervasive environ-
ments, scalability and network-wide reachability, dynamic
self-starting property, and network load analysis.

4.1 Enabling Broad Range of Discovery
Mechanisms

GSD by virtue of its hierarchical grouping of services can
enable a broad set of discovery mechanisms ranging from
broadcast to directed unicast of the discovery requests. Service
discovery requests contain information regarding the
group(s) to which the service belongs. Thus, at its limit,
this could represent a leaf node group in the hierarchical
tree (Fig. 1). If the number of selective forwards at each
intermediate node is one, then this results in a directed
unicast of the discovery request.

However, as described in Section 3, directed unicast in
mobile environments may result in false forwards. The
hierarchical grouping of services allows the discovery
request to specify parent-groups (that are higher up in the
functional hierarchy in Fig. 1). This increases the range of
nodes to which the request is selectively forwarded. This is
because, the higher the service group is in the tree, the
higher the chance is of nodes having seen a similar service.
At its limit, the request is in fact broadcast if the service-
group specified is the root of the hierarchical tree. Broad-
cast-based discovery suits some constrained pervasive
environments, like office space or environments, where
most devices are at one hop distance.

Additionally, by varying the service-group information
in the request, GSD also can control the chances of the

CHAKRABORTY ET AL.: TOWARD DISTRIBUTED SERVICE DISCOVERY IN PERVASIVE COMPUTING ENVIRONMENTS 103

Fig. 8. Reverse routing of service reply.

protocol in discovering a nearly-matching service. For
example, a discovery request looking for a LaserJet color
printer with a service-group value of LaserJet printer would
not be able to discover (or reach) an Inkjet printer service.
However, a service-group value of printer (that is, the parent
of the class LaserJet printer) might be able to discover an
Inkjet color printer instead since it belongs to the same parent
group of services called printer.

4.2 Adaptability

GSD offers users control over several aspects of the protocol
like advertisement diameter, maximum hop-count of dis-
covery requests and advertisement frequency. This enables
our protocol to easily adapt to the needs of users and
pervasive environments. For example, an office environ-
ment can enforce a policy on the devices that the
advertisements be broadcast only up to 1 hop. GSD does
not impose any restriction on the minimum number of
entries in the service cache of devices. This makes our
protocol well-suited for heterogeneous devices with vary-
ing memory constraints. GSD by virtue of its registry-less
structure makes a service and a device autonomous. This is
very important in pervasive computing environments since
dependence on other mobile lookup servers/registries
makes the protocol prone to faults, due to failure of such
registries/lookup servers. Services announce themselves
when they come to a new environment. Services are
expunged from the service caches passively if the adver-
tisement has not been renewed for a certain time. The
registry-less nature of our architecture makes it highly
adaptable to changes in the vicinity due to mobility as well
as device unavailability.

4.3 Scalability and Network-Wide Reachability

Request-broadcast based protocols can theoretically cover
the whole network. Hence, under ideal conditions of
nonpartitioned network and no message loss, request-
broadcast-based protocols can guarantee the discovery of a
service (if present). However, this protocol trades off
network load to increase its discovery space. The network
load due to discovery requests increases significantly with
increase in the network size. GSD on the other hand, can
theoretically discover any service in the network with
bounded broadcasts.

Consider the network (G) in Fig. 9. Let RS = Request
Source that is looking for a service S, SP = an arbitrary

service provider having the service S. Let us also assume
that it is the only instance of S present in the network.

. Request-broadcast protocol. Let D = broadcast
diameter. Hence, this protocol can only cover the
nodes within D hops of RS (marked by the circle with
RS at its center in Fig. 9). Let N = set of nodes that this
protocol can cover. Clearly, if SP does not belong to
N, then this protocol would fail to discover S.

. GSD protocol. Let P = an arbitrary node lying on the
edge of the network formed by the broadcast
diameter D from RS. Then, assuming that the
network does not have any partition, there will be
at least one path leading from P to SP. This further
means that, due to service advertisements, the group
information of the service S will eventually reach the
node P through the path. Thus, in GSD, if the
discovery request reaches P, it will be selectively
forwarded toward SP and would eventually be able
to discover the service. Thus, GSD would essentially
cover the whole network under identical conditions.

This makes our protocol highly scalable with respect to
large-scale ad hoc networks and high request load. It might
appear that advertising increases the total load of our
system. Our experiments show that even with bounded
advertising, our protocol scales much better than broadcast-
based service discovery. In fact, GSD performs much better
in terms of network load for large networks.

4.4 Dynamic Self-Starting Property

GSD has a dynamic self-starting property and is not
dependent on any bootstrap mechanism or fixed hosts for
startup. Neither is it dependent on the topology, nor the
mobility of the nodes for its stability. Each node maintains a
soft state of the services present in its vicinity and hence on
failure, does not need to do any fault-recovery during start-
up. It passively collects the information by listening to
advertisements.

4.5 Network Load Analysis

It might appear that GSD with bounded advertisements and
selective forwarding of requests may impose greater
network load (in terms of number of messages) than simple
global-broadcast based protocol. A global broadcast-based
protocol does not have any advertisements. However, it
broadcasts the requests to all nodes in the network.

104 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 2, FEBRUARY 2006

Fig. 9. Network-wide reachability study of GSD.

Let N = the number of nodes in the network G. Let us
consider that all nodes send out advertisements in GSD.

Let b = the total number of nodes that generate service
discovery requests.

Let T = the total time of observation.

. Broadcast-based protocol. Let Rf = the Request
Frequency (number of requests/second). All re-
quests are broadcast to the whole network. Let m =
the total number of messages generated in the
system due to a single service request being broad-
cast in the network. Thus, in time T, the total
network load generated by Broadcast is

MBCast ¼ Rf �m � T � b: ð1Þ

. GSD protocol. Let Af = Average Advertisement
Frequency (number of advertisements/second)
across all the nodes N in G. Let n = the total number
of messages generated in a single bounded adver-
tisement from a single node in G. Thus, the total
number of messages generated by advertisements in
time T by all nodes in G is MAdv ¼ n �N �Af � T .

Let p = the average number of messages gener-
ated in the system due to a single discovery request
in GSD. Observe that p � m. This is because, at its
worst case, the GSD discovery request would be
broadcast throughout the network. The total number
of messages generated in the network due to
requests in time T is MReq ¼ p �Rf � T � b.

We observe that the total number of messages
generated in GSD is a sum total of the request
messages and the advertisement messages. Thus,
MGSD = the total network load in G due to GSD is
given by

MGSD ¼ n �N �Af � T þ p �Rf � T � b: ð2Þ

We also note that, for GSD to have lesser network
load than Broadcast, MBCast �MGSD or

Rf � ðm� pÞ � b � n �N �Af: ð3Þ

5 EXPERIMENTAL EVALUATION

We simulated the GSD protocol using the ad hoc network
simulator Glomosim [50]. We primarily compare various
discovery mechanisms of GSD with a simple broadcast-
based discovery that has been predominantly used so far to
discover services in ad hoc/pervasive environments. It is
worth noting again that, in a broadcast-based discovery
protocol (dubbed as BCast), a service request is globally
broadcast to other nodes in the network until the required
service has been discovered. There are no advertisements
and the broadcast request dies down after all nodes have
received the request once.

Clearly, the worst case performance of GSD (in terms of
network load) is when the service request is broadcast to
other nodes. This happens when enough service group
information to do selective forwarding is unavailable. We
call this protocol GSD-B. We also compare the average case

performance of GSD when GSD performs selective for-

warding of a request. We call this GSD-S. We also compare

the performance of the protocols with varying advertise-

ment diameter. We do not compare GSD with global

advertisement based protocol, since it generates “n” times

the load generated by request broadcast-based protocol

(assuming the request rate is same as the advertisement

rate) and, hence, is a very inefficient solution for large scale

networks. We observe that the performance of GSD will

deteriorate as the average advertisement diameter is

increased. Our experiments show that an advertisement

diameter of 1 provides the best results.
We assume a pessimistic evaluation strategy and

compare GSD in environments less favorable to it. A

pessimistic evaluation strategy helps us better justify the

effectiveness of GSD in more conducive environments.

We impose the following restrictions on the simulation

environment:

. Request Source Restriction. The number of request
sources sending discovery requests is restricted to 1.
This makes b = 1 in (3). This reduces the additive
effect formed due to multiple request sources and
makes it more difficult for the equation to be true,
thus favoring BCast.

. Rf=Af Ratio. In (3), since the values of m, p, and n are
not known beforehand, we observe that a low value
of Rf and a high value of Af would make BCast
more favorable as far as network load is concerned,
whereas the vice versa would make GSD more
favorable. Hence, in our experiments, we have
varied the ratio of Rf=Af from 0.25 to 2.0. This will
favor BCast on one end GSD on the other.

. Density of Matching Services. The higher the number
of SPs, the greater is the chance of either protocols
discovering the service. Hence, in our experiments,
only 10 percent of the SPs contain the service desired
by the discovery request. The initial placement of the
matching services were at the edge of the network.

5.1 Experimental Model and Evaluation Metrics

Our experimental model consists of mobile service provi-

ders (SP) containing one or more services connected to each

other using an ad hoc network. The mobility of the nodes

was assumed to follow random-waypoint [26] pattern. We

used an application layer packet generation function to

generate service requests at regular time intervals. For the

purposes of the simulation, we used representative services

S0 to S99 to represent actual services and groups G1 to G10

to represent service groups with G10 being equivalent to the

parent service group called “Service” at the root of our

hierarchical tree.
All our experiments were carried out with a fixed node

density so as to appropriately simulate the effect of

increased network size. The results are an average of

experiments run for three different randomization patterns

for a total time of 75 minutes with the value of Rf ranging

from 1 request/minute to 8 requests/minute. Thus, the

plots are averages over a minimum of 225 data points to a

maximum of 1,800 data points. Fig. 10 represents the

CHAKRABORTY ET AL.: TOWARD DISTRIBUTED SERVICE DISCOVERY IN PERVASIVE COMPUTING ENVIRONMENTS 105

various experimental parameters used and varied in our
simulations.

We evaluated the protocols with respect to several
metrics like average response time, average response hops,
discovery efficiency, average network load, average mes-
sage processing per node, and other metrics that provide
statistics regarding the usage of service groups in GSD. We
present the results in the next section.

5.2 Simulation Results

The average response time for discovery requests is the time
from the instant a request is sent out to the instant a service
reply is obtained. We observe in Fig. 11 that the average
response time of BCast is at least two times higher than the
average response times observed in GSD-S and GSD-B. We
also observe in Fig. 12 that the average Response Hops or
average number of hops traveled by the response is greater
for BCast. Moreover, the average response hops in GSD-S
seem to be marginally lower than GSD-B. This shows that
our protocol performs better than BCast in terms of
response time and average response hops. We believe that
the increase in response time is mostly due to the average
response hops being about two times greater in BCast. The
average response hops decrease in GSD because each

request could travel only up to an intermediate node where
a matching service description is available. The discovery
request does not need to reach the actual service provider
(as explained in Section 3.3).

Fig. 13 shows the amount of network load generated by
the various protocols. The average network load is defined
as the average number of messages (advertisements and
discovery requests) processed per node. We observe that
the network load of GSD-S and GSD-B increases very
slowly with increasing request load. We also observe that
BCast performs better for a low value of Rf=Af . This is
intuitive since, according to (3), a low value of Rf=Af favors
BCast. However, for values of Rf=Af � 0:50 and an
advertisement diameter of 1, GSD starts performing better.
We also notice similar performance improvements of GSD
for advertisement diameter of 2. This shows that our
protocols are very scalable with respect to increasing
request load as well as network size. Understandably,
GSD (both GSD-S and GSD-B) generates greater network
load with increasing advertisement diameter (in terms of
the average number of messages processed per node).
However, the increase in the network load with increasing
request load is very low. Our experiments suggest that
GSD-S with an advertisement diameter of 1 provides the

106 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 2, FEBRUARY 2006

Fig. 10. Experimental model parameters.

Fig. 11. Average response time statistics for the various protocols.

CHAKRABORTY ET AL.: TOWARD DISTRIBUTED SERVICE DISCOVERY IN PERVASIVE COMPUTING ENVIRONMENTS 107

Fig. 12. Average response hops observed for the various protocols.

Fig. 13. Average network load comparison of the various protocols.

best results as far as network load and response time
statistics are concerned. We also observe that the gradient of
increase in the load is much higher in BCast for N = 100.
This further proves that BCast scales poorly with increasing
network size.

Discovery Efficiency is defined as the fraction of
discovery requests that are successful in discovering the
required service. One important tradeoff between BCast
and GSD-S is that GSD-S might generate false forwards
leading to a discovery failure. Thus, intuitively, BCast
should have a greater discovery efficiency, especially in
mobile environments. Fig. 15 shows the various discovery
efficiencies we observed for BCast, GSD, and GSD-S. The
efficiencies are remarkably similar for N = 50. This shows
that our protocol performs almost as well as BCast but uses
the network more efficiently and, hence, is a more scalable
and efficient solution.

The efficiency of BCast drops drastically for a greater
network (N = 100) with high request load. We believe that

this is mostly due to the huge network load generated due to
broadcasting of all the requests due to which many of the
service requests/responses are dropped or lost due to
collisions. We could not calculate the number of messages
being dropped in case of broadcasts, since Glomosim
silently discards broadcast messages if there are collisions.
However, Fig. 16 gives us a comparison of the increase in the
number of discovery requests processed per node for the
various protocols that further corroborates our argument.

It might seem from Fig. 13 that GSD-S and GSD-B
perform similarly. However, this is not true. As seen in
Fig. 14, selective forwarding brings about 50 percent
reduction in total network load. The difference is not
evident due to compression of the plots in Fig. 13.
Moreover, from Figs. 11, 12, and 15, we observe that GSD
has this performance gain without any significant loss in
terms of response time, response hops, and discovery
efficiency. However, we do not observe such drastic
differences for advertisement diameter of 2. We attribute

108 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 2, FEBRUARY 2006

Fig. 14. Comparison of GSD-S and GSD-B in terms of network load.

Fig. 15. Discovery Efficiency comparison of the various protocols.

this to a higher advertisement diameter that replicates the

same service information across a greater number of nodes,

thus reducing the number of effective selective forwards.
Fig. 17 provides an estimate of the decrease in the

average number of selective forward events in the nodes

due to an increase in the advertisement diameter in GSD-S.

We observe that GSD-S with an advertisement diameter of 2

performs better in reducing the amount of selective

forwards. This follows from our protocol, since an increase

in the diameter would cause the service to be replicated in a

greater number of nodes, thus increasing its chances of

being discovered with lesser number of selective forwards.

However, we would still argue that GSD-S with an

advertisement diameter of 1 performs better, since it

generates lesser overall network load (Fig. 13).
We also conducted experiments with a network size of

200. The results we obtain follow similar patterns as those

reported in this paper. We do not present those results due

to space restrictions. However, they are available at http://
www.cs.umbc.edu/~dchakr1/papers/ieeetmcGraphs.pdf.

6 RELATED WORK

Service discovery is an important and active area of
research [8], [21] and has been studied widely in the context
of Web services. Research in this field has forked along
two branches, namely, service description and matching and
service discovery architectures.

Service description languages like Web Services Devel-
opment Language (WSDL) [47], Web Services Flow Lan-
guage (WSFL) [48], and DARPA Agent Markup Language
for services (DAML-S) [19] have been developed to describe
Web services in a flexible manner. The Web Services
Description Language (WSDL) by W3C [47] is an XML
format for describing network services as a set of endpoints
operating on document-oriented or procedure-oriented
messages. The DAML project by DARPA and the W3C

CHAKRABORTY ET AL.: TOWARD DISTRIBUTED SERVICE DISCOVERY IN PERVASIVE COMPUTING ENVIRONMENTS 109

Fig. 16. Average discovery requests processed per node for the various protocols.

Fig. 17. Average selective forward events processed per node for GSD-S.

focus on standardizing OWL as the language for describing
information available on any data source. The information
may thus be understood and used by any class of
computers, without human intervention. We have used an
OWL-based ontology to describe our services and our logic
behind using OWL is explained in Section 2.

Service Discovery Architectures like Jini [1], Salutation,
and Salutation-lite [40], UPnP [25], and Service Location
Protocol [22] have been developed over the past few years
to efficiently discover wired infrastructure-based services
from wired as well as wireless platforms. However, most of
these service discovery infrastructures have a central
lookup server type architecture for service registration
and discovery. Central lookup server/registry-based me-
chanism for doing service discovery is inappropriate in ad
hoc/pervasive environments due to the dependence of the
whole infrastructure on a central point/node, which might
as well be mobile and unreliable.

Research in the area of service discovery for ad hoc
networks is relatively new. Solutions [23], [43] primarily
utilize the broadcast-driven nature of the underlying ad hoc
network to carry out service discovery. We have shown in
Section 5 that broadcast-driven protocols do not work well
in terms of scalability and efficiency of discovery for large-
scale pervasive environments. There has been work in the
field of wired networks to develop server-less peer-to-peer
architectures as shown in [39], [41], [30]. However, some
key limitations of such approaches with respect to
pervasive environments are: 1) traditional P2P networks
derive basic boot-strap support from some trusted hosts that
are robust and available, while we cannot assume such
support in an ad hoc environment, 2) underlying protocols
to discover resources are essentially broadcast-driven, thus
potentially generating significant network load, and 3) the
virtual network topology of these P2P networks do not use
the underlying physical Internet topology effectively, thus
affecting their scalability and efficiency. Service discovery
architectures in pervasive environments not only have to
utilize the underlying dynamically changing topology, but
also have to be independent of any boot-strap servers.

There has been work on content-centric networking and
content-based message routing architectures [46], [7] that
use publish-subscribe-based architectures to route data
based on its content. However, such architectures do not
perform well in a distributed ad hoc environment due to
their centralized/semicentralized architecture.

The Bluetooth Service Discovery protocol [42] is a peer-
to-peer service discovery protocol that can be used over ad
hoc environments. However, apart from the fact that it
supports very rudimentary unique-identifier-based match-
ing, the discovery is also driven by broadcast in a piconet.
GSD is targeted toward generalized ad hoc networks that
are a better representation of pervasive environments. Our
prior work enhances the Bluetooth service discovery
protocol to include service description-based reasoning [2]
using Prolog. However, it only enhances the service
matching part of Bluetooth and does not address discovery
architecture.

Recently, work done by Crespo and Garcia-Molina [16]
addresses resource discovery using routing indices. They
use routing indices to measure the “goodness” of neighbors

in answering a query or providing a resource. However, the
solution places index values on different paths in the peer-
to-peer system and, hence, requires a huge amount of
updating in the event that the paths change dynamically (as
they do in pervasive environments). Our group-based
service discovery protocol does not place any weight on
paths; rather, it adapts itself depending on the movement of
the devices in the vicinity.

Advertisements in pervasive environments is coming up
as a new area of research and our protocol can benefit by
using intelligent schemes for adaptive advertising of
services. For example, Ranganathan and Campbell [38] talk
about serendipitous advertising and Finin et al. [32] talk
about policy-based advertising that can easily perform
better than periodic advertising of services. Our architec-
ture is extensible and can easily be enhanced to accom-
modate these protocols.

7 CONCLUSIONS

In this paper, we have introduced a novel architecture and
protocol (GSD) for service discovery in pervasive comput-
ing environments. Service Discovery is done in a peer-to-
peer mode rather than a centralized mode, and we use
advertisements to disseminate service information. We use
an ontology based on OWL to describe services and use the
Class/SubClass hierarchy of OWL to group services based
on their functionality. We use this group information to
intelligently route service requests. GSD is scalable in terms
of request load and network size and highly adaptable to
various pervasive computing environments. We have
presented exhaustive experimental results of performance
of GSD in mobile environments for various kinds of request
load and network sizes. Our results show that GSD scales
very well with increasing request load and network size,
whereas standard broadcast-based solutions used so far for
service discovery in ad hoc networks do not. Moreover, our
protocol provides the same standards of efficiency in
discovering services when compared to Broadcast-based
solutions. In fact, for large networks and high request loads,
broadcast-based solutions perform worse than GSD in
terms of discovery efficiency. We have implemented a
restricted version [12] of GSD over Bluetooth to supplement
our work in the area of service composition.

ACKNOWLEDGMENTS

This work was supported in part by US National Science
Foundation awards IIS 9875433, IIS 0209001, CCR 0070802,
ACI 0203958, and the DARPA DAML program under
contract F30602-97-1-0215.

REFERENCES

[1] K. Arnold, B. Osullivan, R.W. Scheifler, J. Waldo, and A. Wollrath,
The Jini Specification (The Jini Technology). Reading, Mass.:
Addison-Wesley, June 1999.

[2] S. Avancha, A. Joshi, and T. Finin, “Enhanced Service Discovery in
Bluetooth,” Computer, vol. 35, no. 6, pp. 96-99, June 2002.

[3] D.O. Awduche, A. Gaylord, and A. Ganz, “On Resource
Discovery in Distributed Systems with Mobile Hosts,” Proc.
ACM Int’l Conf. Mobile Computing and Networking (MOBICOM),
Nov. 1996.

110 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 2, FEBRUARY 2006

[4] P. Bhagwat, B. Raman, and S. Seshan, “Arguments for Cross-
Layer Optimizations in Bluetooth Scatternets,” Proc. Symp.
Applications and the Internet (SAINT), Jan. 2001.

[5] Bluetooth SIG, “Specification,” http://bluetooth.org, 2004.
[6] D. Brickley and R. Guha, “Resource Description Framework (RDF)

Schema Specification 1.0—W3C Recommendation,” http://www.
w3.org/TR/2000/CR-rdfschema-20000327, 2000.

[7] A. Carzaniga and A.L. Wolf, “Content-Based Networking: A New
Communication Infrastructure,” Proc. US Nat’l Science Foundation
Workshop Infrastructure for Mobile and Wireless Systems in conjunc-
tion with the Int’l Conf. Computer Comm. and Networks (ICCCN), Oct.
2001.

[8] Very Large Data Bases J., special issue on e-services, F. Casati,
D. Georgakopoulos, and M. Shan, eds., 2001.

[9] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M. Shan,
“Adaptive and Dynamic Service Composition in eFlow,” Techni-
cal Report, HPL-200039, Software Technology Laboratory, Mar.
2000.

[10] D. Chakraborty and A. Joshi, “GSD: A Novel Group-Based Service
Discovery Protocol for MANETS,” Proc. IEEE Conf. Mobile and
Wireless Comm. Networks, Sept. 2002.

[11] D. Chakraborty, F. Perich, S. Avancha, and A. Joshi, “DReggie: A
Smart Service Discovery Technique for E-Commerce Applica-
tions,” Proc. Workshop in conjunction with 20th Symp. Reliable
Distributed Systems, Oct. 2001.

[12] D. Chakraborty, F. Perich, A. Joshi, T. Finin, and Y. Yesha, “A
Reactive Service Composition Architecture for Pervasive Comput-
ing Environments,” Proc. Seventh Personal Wireless Comm. Conf.
(PWC 2002), Oct. 2002.

[13] D. Chakraborty, A. Shenoi, A. Joshi, and Y. Yesha, “Queuing
Theoretic Approach for Service Discovery in Ad-Hoc Networks,”
Proc. Comm. Networks and Distributed Systems Modeling and
Simulation Conf. (CNDS), Jan. 2004.

[14] H. Chen, A. Joshi, and T. Finin, “Dynamic Service Discovery for
Mobile Computing: Intelligent Agents Meet Jini in the Aether,”
Baltzer Science J. Cluster Computing, special issue on advances in
distributed and mobile systems and comm., 2001.

[15] M. Cherniak, M. Franklin, and S. Zdonik, “Expressing User
Profiles for Data Recharging,” IEEE Personal Comm., July 2001.

[16] A. Crespo and H. Garcia-Molina, “Routing Indices for Peer-to-
Peer Systems,” Proc. Int’l Conf. Distributed Computing Systems
(ICDCS), July 2002.

[17] A. Joshi, D. Chakraborty, and Y. Yesha, “An Integrated Service
Discovery and Routing Protocol for Ad Hoc Networks,” Ad Hoc
Networks J., Mar. 2003.

[18] T. Finin, D. Khushraj, and A. Joshi, “Semantic Tuple Spaces: A
Coordination Infrastructure in Mobile Environments,” Proc.
Second Int’l Semantic Web Conf. (ISWC), Oct. 2003.

[19] “DARPA Agent Markup Language for Services Specification Draft
0.5,” http://www.daml.org/services/daml-s/2001/05/, May
2001.

[20] M. Dean, D. Connolly, F.V. Harmelen, J. Hendler, I. Horrocks, D.L.
McGuinness, P.F. Patel-Schneider, and L.A. Stein, “Web Ontology
Language (OWL) Reference Version 1.0,” http://www.w3.org/
TR/2002/WD-owl-ref-20021112/, 2002.

[21] IEEE Data Eng. Bull., special issue on infrastructure for advanced
e-services, G. Weikum, ed., vol. 24, no. 1, Mar. 2001.

[22] E. Guttman, C. Perkins, and J. Veizades, RFC 2165: Service Location
Protocol, June 1997.

[23] S. Helal, N. Desai, and C. Lee, “Konark-A Service Discovery and
Delivery Protocol for Ad-Hoc Networks,” Proc. Third IEEE Conf.
Wireless Comm. Networks (WCNC), Mar. 2003.

[24] T. Hodes et al., “An Architecture for a Secure Service Discovery
Service,” Proc. Fifth Int’l Conf. Mobile Computing and Networks, Aug.
1999.

[25] R. John, “UPnP, Jini and Salutaion—A Look at Some Popular
Coordination Frameworks for Future Network Devices,” technical
report, California Software Labs, 1999, http://www.cswl.com/
whiteppr/tech/upnp.html.

[26] D.B. Johnson and D.A Maltz, “The Dynamic Source Routing
Protocol for Mobile Ad-Hoc Networks,” Mobile Computing,
pp. 153-181, 1996.

[27] R.H. Katz, E.A. Brewer, and Z.M. Mao, “Fault-Tolerant, Scalable,
Wide-Area Internet Service Composition,” Technical Report
UCB/CSD-1-1129, CS Division, EECS Department, Univ. of
California, Berkeley, Jan. 2001.

[28] T. Finin, L. Kagal, and A. Joshi, “Trust-Based Security in Pervasive
Computing Environments,” Computer, Dec. 2001.

[29] O. Lassila and R. Swick, “Resource Description Framework,”
http://www.w3.org/TR/1999/REC/rdf-syntax-19990222, Feb.
1999

[30] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and
Replication in Unstructured Peer-to-Peer Networks,” Proc. 16th
ACM Int’l Conf. SuperComputing, June 2002.

[31] D. Mennie and B. Pagurek, “An Architecture to Support Dynamic
Composition of Service Components,” Proc. Fifth Int’l Workshop
Component-Oriented Programming (WCOP), June 2000.

[32] T. Finin, O. Ratsimor, A. Joshi, and Y. Yesha, “eNcentive: A
Framework for Intelligent Marketing in Mobile Peer-To-Peer
Environments,” Proc. Fifth Int’l Conf. Electronic Commerce (ICEC),
Oct. 2003.

[33] M. Paolucci, A. Ankolekar, N. Srinivasan, and K. Sycara, “The
DAML-S Virtual Machine,” Proc. Second Int’l Semantic Web Conf.
(ISWC), Oct. 2003.

[34] V.D. Park and M.S. Corson, “A Highly Adaptive Distributed
Routing Algorithm for Mobile Wireless Networks,” Proc. 16th
Ann. Joint Conf. IEEE Computer and Comm. Soc. (INFOCOM), Apr.
1997.

[35] F. Perich, S. Avancha, D. Chakraborty, A. Joshi, and Y. Yesha,
“Profile Driven Data Management for Pervasive Environments,”
Proc. 13th Int’l Conf. Database and Expert Systems Applications
(DEXA), Sept. 2002.

[36] C.E Perkins and P. Bhagwat, “Highly Dynamic Destination-
Sequenced Distance-Vector Routing (DSDV) for Mobile Compu-
ters,” Computer Comm. Rev., pp. 234-44, Oct. 1994.

[37] C.E. Perkins and E.M Royer, “Ad-Hoc On-Demand Distance
Vector Routing,” Proc. Second IEEE Workshop Mobile Computing
Systems and Applications, pp. 90-100, Feb. 1999.

[38] A. Ranganathan and R.H. Campbell, “Advertising in a Pervasive
Environment,” Proc. Second ACM Int’l Workshop Mobile Commerce,
pp. 10-14, Sept. 2002.

[39] M. Ripeanu and I. Foster, “Mapping the Gnutella Network:
Macroscopic Properties of Large-Scale Peer-to-Peer Systems,”
Proc. First Int’l Workshop Peer-to-Peer Systems, Mar. 2002.

[40] The Salutation Consortium Inc., “Salutation Architecture Specifi-
cation Part 1, Version 2.1 Edition,” http://www.salutation.org,
1999.

[41] J. Sauver, “Percentage of Total Internet Traffic Consisting of
Kazaa/Morpheus/FastTrack,” http://darkwing.uoregon.edu/
joe/kazaa.html, 2002.

[42] BluetoothSpecification, http://www.bluetooth.org/specifications.
html, 2004.

[43] D. Tang, C. Chang, K. Tanaka, and M. Baker, “Resource Discovery
in Ad Hoc Networks,” Technical Report CSL-TR-98-769, Stanford
Univ., Aug. 1998.

[44] J. Undercoffer, F. Perich, A. Cedilnik, L. Kagal, A. Joshi, and T.
Finin, “A Secure Infrastructure for Service Discovery and
Management in Pervasive Computing,” ACM MONET: J., special
issue on mobility of systems, users, data, and computing, 2002.

[45] “Universal Description Discovery and Integration Platform,”
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.
pdf, Sept. 2000.

[46] E. Schwartz, W. Adjie-Winoto, and H. Balakrishnan, “The Design
and Implementation of an Intentional Naming System,” Proc.
Symp. Operating Systems Principles, Dec. 1999.

[47] WSDL, “Web Services Description Language 1.1,” http://www.
w3.org/TR/wsdl, Mar. 2001.

[48] WSFL, “Web Services Flow Language,” http://xml.coverpages.
org/wsfl.html, June 2001.

[49] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau, “Automating
DAML-S Web Services Composition Using SHOP2,” Proc. Second
Int’l Semantic Web Conf. (ISWC), Oct. 2003.

[50] R. Bagrodia, X. Zeng, and M. Gerla, “GloMoSim: A Library for
Parallel Simulation of Large-Scale Wireless Networks,” Proc. 12th
Workshop Parallel and Distributed Simulations, 1998.

CHAKRABORTY ET AL.: TOWARD DISTRIBUTED SERVICE DISCOVERY IN PERVASIVE COMPUTING ENVIRONMENTS 111

Dipanjan Chakraborty received the PhD de-
gree from the University of Maryland, Baltimore
County (UMBC), where he was also a research
member of the ebiquity research group. He is
presently with IBM Research. His reserach is in
the areas of mobile and pervasive computing
environments, mobile and e-commerce, peer-to-
peer systems with special interests in the fields
of service discovery, information aggregation,
and composition, ad hoc network application-

centric routing, and agent-based systems. He specializes in the
development and modeling of distributed architectures to enable mobile
and pervasive commerce in ubiquitous environments. His thesis is in the
area of service discovery and composition for pervasive environments.
He has been a fellow of IBM during the three years of his PhD
candidacy.

Anupam Joshi received the BTech degree in
electrical engineering from IIT Delhi in 1989, and
the Masters and PhD degrees in computer
science from Purdue University in 1991 and
1993, respectively. He is currently a professor of
computer science and electrical engineering at
the University of Maryland, Baltimore County
(UMBC). Earlier, he was an assistant professor
in the CECS Department at the University of
Missouri, Columbia. His research interests are in

the broad area of networked computing and intelligent systems. His
primary focus has been on data management for mobile computing
systems in general and, most recently, on data management and
security in pervasive computing and sensor environments. He has
created agent-based middleware to support discovery, composition, and
secure access of services/data over both infrastructure based (e.g.,
802.11, cellular) and ad hoc wireless networks (e.g. Bluetooth). He is
also interested in semantic Web and data/Web mining, where he has
worked on personalizing the web space using a combination of agents
and soft computing. His other interests include networked HPCC. He
has published more than 50 technical papers and has obtained research
support from the US National Science Foundation, NASA, DARPA,
DoD, IBM, AetherSystens, HP, AT&T, and Intel. He has presented
tutorials in conferences, served as a guest editor for special issues for
IEEE Personal Communications, Communications of the ACM, etc., and
served as an associate editor of the IEEE Transactions on Fuzzy
Systems from 1999-2003. At UMBC, he teaches courses in operating
systems, mobile computing, networking, and Web mining. He is a senior
member of IEEE, a member of the IEEE Computer Society, and a
member of the ACM.

Yelena Yesha received the BSc degree in
computer science from York University, Toronto,
Canada, in 1984, and the MSc and PhD degrees
in computer and information science from The
Ohio State University in 1986 and 1989,
respectively. Since 1989, she has been with
the Department of Computer Science and
Electrical Engineering at the University of Mary-
land Baltimore County, where she is presently a
Verizon Professor. In addition, from December

1994 through August 1999, she served as the Director of the Center of
Excellence in Space Data and Information Sciences at NASA. Her
research interests are in the areas of distributed databases, distributed
systems, mobile computing, digital libraries, electronic commerce, and
trusted information systems. She has published eight books and more
than 100 refereed articles in these areas. She was a program chair and
general cochair of the ACM International Conference on Information and
Knowledge Management and a member of the program committees of
many prestigious conferences. She is a member of the editorial board of
the Very Large Databases Journal and the IEEE Transactions on
Knowledge and Data Engineering, and is editor-in-chief of the
International Journal of Digital Libraries. During 1994, she was the
Director of the Center for Applied Information Technology at the National
Institute of Standards and Technology. She is a senior member of the
IEEE and a member of the ACM.

Tim Finin has received degrees from MIT and
the University of Illinois. He is currently a
professor in the Department of Computer
Science and Electrical Engineering at the Uni-
versity of Maryland Baltimore County (UMBC).
He has more than 30 years of experience in the
applications of artificial intelligence to problems
in information systems, intelligent interfaces,
and robotics, and is currently working on the
theory and applications of intelligent software

agents, the semantic Web, and mobile computing. Prior to joining the
UMBC, he held positions at Unisys, the University of Pennsylvania, and
the MIT AI Laboratory. He is the author of more than 180 refereed
publications and has received research grants and contracts from a
variety of sources. He has been the past program chair or general chair
of several major conferences. He is a former AAAI councilor and is a
member of the the board of directors of the Computing Research
Association.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

112 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 2, FEBRUARY 2006

